已知sin(θ+π⼀3)=1⼀3,θ属于(0,π),则cos(θ+π⼀12)=

2024-12-27 02:10:44
推荐回答(2个)
回答1:

θ属于(0,π)
且sin(θ+π/3)>0
所以cos(θ+π/3)即可能大于0.也可能小于0,根据两者平方和等于1,得cos(θ+π/3)=±2√2/3
cos(θ+π/12)
=cos(θ+π/3-π/4)
=cos(θ+π/3)cos(π/4)+sin(θ+π/3)sin(π/4)
=√2/2cos(θ+π/3)+√2/6
把cos(θ+π/3)=±2√2/3代入得
cos(θ+π/12)=√2/6±2/3

回答2:

sin(θ+π/3)=1/3,θ属于(0,π),
则cos(θ+π/12)=cos(θ+4π/12-3π/12)=cos(θ+π/3)cos(π/4)+sin(θ+π/3)sin(π/4)
sin(θ+π/3)=1/3,(1/3<1,2/π<θ+π/3<π)cos(θ+π/3)=-2√2/3 代入各个值 得(√2-4)/6