已知a+1⼀a=5,求a琠+a²+1⼀a²的值

2024-12-14 07:20:59
推荐回答(2个)
回答1:

a+1/a=5;a^2-5a+1=0,a=5/2±√21/2
a⁴+a²+1/a²有2解:(5/2±√21/2)^4+(a+1/a)^2-2=(5/2±√21/2)^4+23
解1=(5/2+√21/2)^4+23=(46/4+10√21/4)^2+23=[46×46+100×21+920√21]/16+23=
573/2+(23√21)/2
解2=(5/2-√21/2)^4+23=(46/4-10√21/4)^2+23=[46×46+100×21-920√21]/16+23=
573/2-(23√21)/2

回答2:

(a⁴+a²+1)/a²
=a²+1+1/a²
=a²+2+1/a²-1
=(a+1/a)²-1
=25-1
=24