∫[1/(2+3x²)]dx=1/2∫[1/(1+3/2x²)]dx=1/2·√(2/3)·∫[1/(1+3/2·x²)]d(√(3/2)x)=(√6/6)·arctan(√(3/2)x)+C。
S(1/(2+3x²))dx,变形成S(1/(1+m²))dm=tanm+C