由y=f(x)=x3-3x2+2x+5,得y′=3x2-6x+2,设函数f(x)=x3-3x2+2x+5图象上任一点P(x0,y0),且过该点的切线的倾斜角为α(0≤α<π),则y′=3x02-6x0+2=3(x-1)2-1≥-1,∴tanα≥-1,∴0≤α< π 2 或 3π 4 ≤α<π.∴函数f(x)=x3-3x2+2x+5图象上任一点的切线的倾角的取值范围是[0, π 2 )∪[ 3π 4 ,π).故答案为:[0, π 2 )∪[ 3π 4 ,π).