若P(x,y)满足x2⼀4+y2=1,(y大于等于0),求y-3⼀x-4的最大值和最小值。

2024-12-23 11:15:56
推荐回答(1个)
回答1:

设x=2cost,y=sint
m=(y-3)/(x-4)=(sint-3)/(2cost-4)
2mcost-4m=sint-3
2mcost-sint= 4m-3
√(4m^2+1)*[2m/√(4m^2+1) *cost-1/√(4m^2+1)*sint]=4m-3
令2m/√(4m^2+1)=sinu,1/√(4m^2+1)=cosu
所以√(4m^2+1)*(sinucost-cosusint)=4m-3
√(4m^2+1)*sin(u-t)=4m-3
sin(u-t)(4m-3)/√(4m^2+1)
|sin(u-t)|<=1
所以 |(4m-3)/√(4m^2+1)|<=1
解得: 1-(√3)/3<= m<=1+(√3)/3赞同1| 评论