一道关于概率的数学题:12个乒乓球中,有9个新的3个旧的,第一次比赛取出3个,用完后放回,第二次比

2024-12-29 02:45:07
推荐回答(4个)
回答1:

第一次取球有四种情况:
第1种情况:1新2旧的概率P11:(9*3)/(12*11*10)=27/220;
第2种情况:2新1旧的概率P12:(36*3*6)/ (12*11*10)=108/220;
第3种情况:3新的概率P13:(9*8*7)/(12*11*10)=84/220;
第4中情况:3旧的概率P14:(3*3*2)/ (12*11*10)=1/220.
第二次取球是在第一次取球的基础上进行的,则3球里面有2个新球的情况就分为四种:
第1种情况:在P1的基础上,有8新4旧,则取出3球中有2新的概率P21:
(28*4*6)/ (12*11*10)=112/220;
第2种情况:在P2的基础上,有7新5旧,则取出3球中有2新的概率P22:
(21*5*6)/(12*11*10)=105/220;
第3种情况:在P3的基础上,有6新6旧,则取出3球中有2新的概率P23:
(15*6*6)/(12*11*10)=90/220;
第4种情况:在P4的基础上,有9新3旧,则取出3球中有2新的概率P24:
(36*3*6)/(12*11*10)=108/220.
那么:
(1)第二次取出的3个球中有2个新球的概率为P: P=P11*P21+P12*P22+P13*P23+P14*P24=22032/48400=0.45520661...
(2)第二次取出的3个球中有2个新球,求第一次取到的球中恰有一个新球的概率为P':
P'=(P11*P12)/P=3024/22032=0.1372549...

回答2:

老大,把题目打全来吧

回答3:

还以为是有意思到题目呢,哎,结果题目不全

回答4:

题目不完整