方法1、
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128)-1/128.............倒过来计算
=1-1/128
=127/128
方法2、
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=(1/2+1/4+1/8+1/16+1/32+1/64+1/128)×2
-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
=1-1/128
=127/128
很显然再加上1/128的话
就不断得到1/128+1/128=1/64
1/64+1/64=1/32等等
最后得到1/2+1/2 -1/128
也就是原式=1 -1/128
所以式子的结果为127/128
方法1、
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128)-1/128.............倒过来计算
=1-1/128
=127/128
方法2、
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=(1/2+1/4+1/8+1/16+1/32+1/64+1/128)×2
-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
=1-1/128
=127/128
1/2+1/4+1/8+1/16+1/32+1/64+1/128的简便算法。
这是一个等比数列,直接用等比数列的求和公式就可以了。
Sn=a1(1-q^n)/(1-q)=1-1/128=127/128
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=(1-1/2)+(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)
=1-1/128
=127/128
望采纳噢~