解:原式={cos[-(π-α)]cos[4π+(π-α)]}/{sin[-(π-2α)]tan[2π+(π-α)]}=[cos(π-α)cos(π-α)]/[-sin(π-2α)tan(π-α)]=[cos²(π-α)]/[-sin2α×(-tanα)]=(-cosα)²/[-sin2α×(-sinα/cosα)]=cos²α/[-sinαcosα×(-sinα/cosα)]=cos²α/sin²α=cot²α