如果有n个数据x1,x2,x3.xn,数据的平均数为x,那么方差s^2=[(x1-x)^2+(x2-x)^2+.(xn-x)^2]/n,标准差属方差的算术平方根。
标准差是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示,标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。
标准差是方差的算术平方根,标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
在概率统计中最常使用作为统计分布程度上的测量,标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
方差:如果有n个数据x1,x2,x3.xn,数据的平均数为x,
那么方差s^2=[(x1-x)^2+(x2-x)^2+.(xn-x)^2]/n
极差:一组数据中最大的数与最小的数的差
标准差:方差的算术平方根
方差D 平均数或期望U
D=(X1-U)*(X1-U)+(X2-U)*(X2-U)+...+(Xn-u)*(Xn-U)
标准差=方差开方
这都是统计学的内容.
标准差(SD) 由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
方差(S2) 由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。