原理是平方差公式:a^2-b^2=(a+b)(a-b)
则 1-1/2^2=1^2-(1/2)^2=(1+1/2)(1-1/2),其他以此类推
所以 (1-1/2*2)*(1-1/3*3)*(1-1/4*4)*···*(1-1/10*10)
=(1+1/2)*(1-1/2)*(1+1/3)(1-1/3)*(1+1/4)(1-1/4)*...*(1+1/10)*(1-1/10)
把前后几步算出来
得到=(3/2)*(1/2)*(4/3)*(2/3)*(5/4)*(3/4)*...*(11/10)*(9/10)
发现除(1/2)和(11/10)外,其他都已经配对约成1,如(3/2)和(2/3),(4/3)和(3/4)
最后就是(1/2)*(11/10)=11/20
那个是1-1/3^2吧
如果是的话,1-1/2²=(1-1/2)(1+1/2)=1/2 *3/2 1-1/3²=2/3 *4/3 1-1/4²=3/4 *5/4 以此类推
注意前后两项中正好抵消 如3/2 & 2/3 , 4/3 &3/4 这样结果只剩下第一项和最后一项为1/2*11/10 =11/20
(1-1/2*2)*(1-1/3*3)*(1-1/4*4)*···*(1-1/10*10)
=(1+1/2)*(1-1/2)*(1+1/3)(1-1/3)*(1+1/4)(1-1/4)*...*(1+1/10)*(1-1/10)
=(3/2)*(1/2)*(4/3)*(2/3)*(5/4)*(3/4)*...*(11/10)*(9/10)
=[(1/2)*(2/3)*(3/4)*...*(9/10)]*[(3/2)*(4/3)*(5/4)*...*(11/10)]
=(1/10)*(11/2)
=11/20
(1-1/2*2)*(1-1/3*3)*(1-1/4*4)*···*(1-1/10*10)=(1+1/2)*(1-1/2)*(1+1/3)(1-1/3)*(1+1/4)(1-1/4)*...*(1+1/10)*(1-1/10)=(3/2)*(1/2)*(4/3)*(2/3)*(5/4)*(3/4)*...*(11/10)*(9/10)=[(1/2)*(2/3)*(3/4)*...*(9/10)]*[(3/2)*(4/3)*(5/4)*...*(11/10)]=(1/10)*(11/2)=11/20