1、作PH垂直BC于H,则AP=2t,PC=10-2t,CQ=t,PH=3/5 (10-2t)
三角形CPQ的面积=1/2 * CQ * PH =1/2 * t * 3/5 (10-2t)=-3/5 t方+3t ( 0
(2) 当QC=QP时,作等腰三角形高,所以 ( 1/2 PC):CQ=4:5 t=25/9
(3) 当CP=CQ时, 10-2t=t t=10/3
(1)S=24-(1/2)(10-2t)t(3/5)=3/5t²-3t+24 0
解:由AC为矩形ABCD对角线知△ABC为直角三角形
AB^2+BC^2=AC^2
AC=10
作PM垂直AB于M PN垂直BC于N 连PB
S四边形ABQP=(ABxPM)/2+(BQxPN)/2
因为△AMP全等于△ABC
所以PM=1.6t PN=6-1.2t
带入数值得
S四边形ABQP=4.8t+(8-t)(6-1.2t)/2=0.6t^2-3t+24 0<=t<=5
解2:PQ^2=PN^2+QN^2=36-14.4t+1.44t^2+(BN-BQ)^2
因为PM=BN 所以PQ^2=36-14.4t+1.44t^2+6.76t^2-41.6t+64=8.2t^2-56t+100
△PQC为等腰三角形
若PC=QC则 10-2t=t t=10/3
若PC=PQ则PC^2=QC^2 100-40t+4t^2=8.2t^2-56t+100
4.2t^2=16t 因为t不为0 所以t=80/21
若QC=PQ则QC^2=PQ^2 t^2=8.2t^2-55.6t+100
后面的自己算吧
(1)S=5/6t²-6t+24
(2) (60-12t)/10=5-t
t=5