(1)f(x)=√3sinxcosx+cos²x=√3/2sin2x+(cos2x+1)/2=√3/2sin2x+1/2cos2x+1/2=sin(2x+π/6)+1/2f(x)的最小正周期为2π/2=π2kπ-π/2≤2x+π/6≤2kπ+π/2 (k∈Z)kπ-π/3≤x≤kπ+π/6则f(x)的单调递增区间为[kπ-π/3,kπ+π/6] (k∈Z)(2)2x+π/6=kπ+π/2 (k∈Z)对称轴为x=kπ/2+π/6因为0所以k=0x0=π/6