多重微分求详细过程O(∩_∩)O谢谢

2024-12-20 00:39:02
推荐回答(1个)
回答1:

应该是证gradf(x0,y0,z0)=λgradg(x0,y0,z0)吧(grad表示那个倒三角,打不出来),因为(x0,y0,z0)是一个固定的点,所以gradf(x0,y0,z0)和gradg(x0,y0,z0)就是两个固定的向量,一个向量伸长λ倍之后和另一个向量不等,这事实太过“平凡”了。下面当成等号证明,用拉格朗日乘数法,设辅助函数h(x)=f(x,y,z)-λg(x,y,z),因为(x0,y0,z0)为条件g(x,y,z)=0下的极值点,所以h‘x(x0,y0,z0)=f'x(x0,y0,z0)-λg'x(x0,y0,z0)=0,故f'x(x0,y0,z0)=λg'x(x0,y0,z0),同理f'y(x0,y0,z0)=λg'y(x0,y0,z0),f'z(x0,y0,z0)=λg'z(x0,y0,z0),又由于gradf(x0,y0,z0)=(f'x(x0,y0,z0),f'x(x0,y0,z0),f'x(x0,y0,z0)),所以存在λ使得gradf(x0,y0,z0)=λgradg(x0,y0,z0)