高数可积与连续,间断点之间的关系。

2025-01-31 13:53:54
推荐回答(2个)
回答1:

1。不定积分的可积和存在原函数是等价的关系
2。不定积分和定积分有什么本质区别?有什么关系?
这个就是牛顿-莱布尼茨公式
3。李永乐的书说函数有第一类间断点的不存在原函数。对吧?
第一类间断点是可去间断点,添加一个可去点才连续,因此单独的这种函数,是不存在统一的原函数的,也有可能是分段的可积的
4。后边定积分里说函数是在区间ab有有限个间断点的有界函数也可以积分,对吧?那么,此处的间断点分类型么?包含无穷间断点么?如果包含的话,函数可以说是有界函数么?还是这里的间断点就特指是第一类间断点??
定积分就是求面积,只是代用了不定积分的计算公式。
最后一个问题是广义积分,也就是定积分中的一种,如果函数在-∞或+∞处存在值,那么就是可以求导的。

回答2:

1.根据不定积分的定义,存在一个函数g ,它的导数是f ,则说g 是f的原函数。所以说原函数和不定积分存在是等价的。2.不定积分有几何意义,代表面积。根据牛顿来布尼兹公式,求定积分可先求其原函数。3.第一类间断点可以有原函数,只是原函数也是间断的,如f:x ,x属于大于0,f取1,x小于1。第二类间断点不可积,可积的函数有三类,不包括无界的函数,无穷函数是无界。5.可以直接求导,只要在无穷时有极限。对于二重积分不可以直接乘,可以化为两积分的条件是被积函数可化为两个单变量函数。