已知f(1-x⼀1+x)=1-x平方⼀1+x平方,求f(x)

2025-01-07 03:37:15
推荐回答(3个)
回答1:

f((1-x)/(1+x)) = (1-x^2)/(1+x^2),(x≠-1)
令t=(1-x)/(1+x)
t+tx=1-x
(t+1)x=(1-t)
x=(1-t)/(1+t)代入f((1-x)/(1+x)) = (1-x^2)/(1+x^2),
f(t) = {1-[(1-t)/(1+t)]^2} / {1+ [(1-t)/(1+t)]^2} = 2t/(1+t^2)
将t换成x:
f(x) = 2x/(1+x^2)

回答2:

解答:
设u=(1-x)/(1+x),解得:x=(1-u)/(1+u)
代入,得到:f(u)=[1-(1-u)^2/(1+u)^2]/[1+(1-u)^2/(1+u)^2]=2u/(1+u^2)
所以:f(x)=2x/(1+x^2)

回答3:

设1-x/1+x=t,则x=(1-t)/(1+t)
f(t)={1-[(1-t)/(1+t)]²}/{1-[(1-t)/(1+t)]²}
=2t/(1+t²)
∴f(x)=2x/(1+x²)