1/1×2+1/2×3+1/3×4+......+1/n(n+1)=1-1/2+1/2-1/3+...+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
因为 1/n(n+1)= 1/n - 1/n+1所以1/1×2+1/2×3+1/3×4+......+1/n(n+1) =(1 - 1/2) +(1/2 - 1/3)+...........+ 1/n - 1/n+1=1- 1/n+1=n/n+1
x=15/36乘以8/15x=2/9