n为奇数,则:
1×2+2×3+3×4+4×5+5×6.......n(n+1)
=2×(1+3)+4×(3+5)+...+(n-1)×(n-2+n)+n(n+1)
=2×4+4×8+..+(n-1)×2(n-1)+n(n+1)
=2×[2^2+4^2+...+(n-1)^2]+n^2+n
=8×[1^2+...+(n-1)^2/4]+n^2+n 注:1^2+...+n^2=n(n+1)(2n+1)/6。
=n(n-1)(n+1)/3+n^2+n
=n^3/3+n^2+2n/3
将n=99代入,即知原式=333,300