因式分解: (一)27x^2+54x^2y+36xy^2+8y^3 (二)1-3(x-y)+3(x-y)^2-(x-y)^3

2024-12-17 05:44:43
推荐回答(4个)
回答1:

一、.第一题好象有问题,27x^2应该是27x^3吧
27x^3+54x^2y+36xy^2+8y^3=(3x+2y)^3
二、原式=[1-(x-y)]^3=(1-x+y)^3
三、原式=(x+y)^2-(m+n)^2+(x+m)^2-(y+n)^2
=[(x+y)-(m+n)][x+y+m+n]+[x+m-(y+n)][x+m+y+n]
=(x+y+m+n)[x+y-m-n+x+m-y-n]
=(x+y+m+n)(2x-2n)
=2(x-n)(x+y+m+n)
四、原式=25x^2-(4a^2-12ab+9b^2)
=25^2-(2a-3b)^2
=(5a-2a+3b)(5a+2a-3b)
=3(a+b)(7a-3b)
五、原式=a^2+2ab+b^2-(c^2-d^2+2cd)
=(a+b)^2-(c+d)^2
=(a+b+c+d)(a+b-c-d)
六、原式=x^4+2x^2+1-(x^2+2ax+a^2)
=(x^2+1)^2-(x+a)^2
=(x^2+1+x+a)(x^2+1-x-a)
七、原式=a^2-4(b^2+2bc+c^2)
=a^2-4(b+c)^2
=(a+2b+2c)(a-2b-2c)
八、原式=a^2+b^2-2ab+4a-4b+4
=(a-b)^2+4(a-b)+2^2
=(a-b+2)^2

回答2:

(一)27x^3+54x^2y+36xy^2+8y^3
如果记得立方和公式的话:
27x^3+54x^2y+36xy^2+8y^3
= (3x)^3 + 3 *(3x)^2*(2y) + 3*(3x)*(2y)^2 + (2y)^3
=(3x+2y)^3
如果不记得立方和公式的话:
27x^3+54x^2y+36xy^2+8y^3
= (27x^3+8y^3) + (54x^2y+36xy^2)
= {(3x)^3+(2y)^3} + 18xy(3x+2y)
=(3x+2y) {(3x)^2-(3x)(2y)+(2y)^2} + 18xy(3x+2y)
=(3x+2y) {(3x)^2-(3x)(2y)+(2y)^2 + 18xy}
= (3x+2y) {(3x)^2+2(3x)(2y)+(2y)^2 }
= (3x+2y) {(3x)+(2y)}^2
= (3x+2y) ^3

(二)1-3(x-y)+3(x-y)^2-(x-y)^3
同上,引用立方差公式:
= 1 - 3*1^2 + 3*1*(x-y)^2 - (x-y)^3
= {1 - (x-y)}^3
=(1-x-y)^3

(三)(x+y)^2+(x+m)^2-(m+n)^2-(y+n)^2
= x^2+2xy+y^2 + x^2+2mx+m^2 -m^2-2mn-n^2 - y^2-2ny-n^2
= 2x^2+2xy +2mx -2mn-2ny-2n^2
= 2(x^2+xy +mx -mn-ny-n^2)

(四)25x^2-4a^2+12ab-9b^2
= 25x^2-(2a-3b)^2
= (5x+2a-3b)(5x-2a+3b)

(五)a^2-c^2+2ab+b^2-d^2-2cd
= a^2+2ab+b^2-c^2-2cd-d^2
= (a+b)^2 - (c+d)^2
= (a+b+c+d)(a+b-c-d)

(六)x^4+2x^2+1-x^2-2ax-a^2
= (x^2+1)^2 - (x+a)^2
= (x^2+1+x+a)(x^2+1-x-a)
= (x^2+x+a+1)(x^2-x-a+1)

(七)a^2-4b^2-4c^2-8bc
= a^2 - 4(b+c)^2
= (a+2b+2c)(a-2b-2c)

(八)a^2+b^2+4a-4b-2ab+4
= a^2-2ab+b^2+4a-4b+4
= (a-b)^2 +4(a-b) + 4
= (a-b+2)^2

回答3:

设3x=a,1/3y=b,则a^3-3a^2b+3ab^2-b^3=(a^3-b^3)-3ab(a-b)=(a-b)(a^2+ab+b^2)-3ab(a-b) =(a-b)(a^2-2ab+b^2)=(a-b)^3 所以原式=(3x-1/3y)^3 很不错哦,你可以试下
ojpgκf≌mΘ堡ai妗ˉ△ぃbi妗ˉ△ぃ45452455802011-9-13 14:12:04

回答4:

设3x=a,1/3y=b,则a^3-3a^2b+3ab^2-b^3=(a^3-b^3)-3ab(a-b)=(a-b)(a^2+ab+b^2)-3ab(a-b) =(a-b)(a^2-2ab+b^2)=(a-b)^3 所以原式=(3x-1/3y)^3
很不错哦,你可以试下