高中物理解题方法
一、图像法
方法简介
图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的.
高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题.
典型应用
1.把握图像斜率的物理意义
在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同.
2.抓住截距的隐含条件
图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件.
3.挖掘交点的潜在含意
一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”.
4.明确面积的物理意义
利用图像的面积所代表的物理意义解题,往往带有一定的综合性,常和斜率的物理意义结合起来,其中v一t图像中图线下的面积代表质点运动的位移是最基本也是运用得最多的.
5.寻找图中的临界条件
物理问题常涉及到许多临界状态,其临界条件常反映在图中,寻找图中的临界条件,可以使物理情景变得清晰.
二、等效法
方法介绍
等效法是科学研究中常用的思维方法之一,它是从事物的等同效果这一基本点出发的,它可以把复杂的物理现象、物理过程转化为较为简单的物理现象、物理过程来进行研究和处理,其目的是通过转换思维活动的作用对象来降低思维活动的难度,它也是物理学研究的一种重要方法.
用等效法研究问题时,并非指事物的各个方面效果都相同,而是强调某一方面的效果.因此一定要明确不同事物在什么条件、什么范围、什么方面等效.在中学物理中,我们通常可以把所遇到的等效分为:物理量等效、物理过程等效、物理模型等效等
典例分析
1.物理量等效
在高中物理中,小到等效劲度系数、合力与分力、合速度与分速度、总电阻与分电阻等;大到等效势能、等效场、矢量的合成与分解等,都涉及到物理量的等效.如果能将物理量等效观点应用到具体问题中去,可以使我们对物理问题的分析和解答变得更为简捷.
2.物理过程等效
对于有些复杂的物理过程,我们可以用一种或几种简单的物理过程来替代,这样能够简化、转换、分解复杂问题,能够更加明确研究对象的物理本质,以利于问题的顺利解决.
高中物理中我们经常遇到此类问题,如运动学中的逆向思维、电荷在电场和磁场中的匀速圆周运动、平均值和有效值等.
3.物理模型等效
物理模型等效在物理学习中应用十分广泛,特别是力学中的很多模型可以直接应用到电磁学中去,如卫星模型、人船模型、子弹射木块模型、碰撞模型、弹簧振子模型等.实际上,我们在学习新知识时,经常将新的问题与熟知的物理模型进行等效处理.
三、极端法
方法简介
通常情况下,由于物理问题涉及的因素众多、过程复杂,很难直接把握其变化规律进而对其做出准确的判断.但我们若将问题推到极端状态、极端条件或特殊状态下进行分析,却可以很快得出结论.像这样将问题从一般状态推到特殊状态进行分析处理的解题方法就是极端法.极端法在进行某些物理过程的分析时,具有独特作用,恰当应用极端法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确.
用极端法分析问题,关键在于是将问题推向什么极端,采用什么方法处理.具体来说,首先要求待分析的问题有“极端”的存在,然后从极端状态出发,回过头来再去分析待分析问题的变化规律.其实质是将物理过程的变化推到极端,使其变化关系变得明显,以实现对问题的快速判断.通常可采用极端值、极端过程、特殊值、函数求极值等方法.
典例分析
1.极端值法
对于所考虑的物理问题,从它所能取的最大值或最小值方面进行分析,将最大值或最小值代入相应的表达式,从而得到所需的结论.
2.极端过程法
有些问题,对一般的过程分析求解难度很大,甚至中学阶段暂时无法求出,可以把研究过程推向极端情况来加以考察分析,往往能很快得出结论.
3.特殊值法
有些问题直接计算可能非常繁琐,但由于物理过程变化的有规律性,此时若取一个特殊值代入,得到的结论也应该是满足的,这种方法尤其适用于选择题的快速求解.
4.函数求极值法
高考中对运用数学工具解决物理问题的要求越来越高,其中运用函数知识解决极值问题是常常遇到的.数学上求极值的方法通常有:利用二次函数求极值、利用不等式求极值、利用判别式求极值、利用三角函数求极值等.
四、对称法
方法介绍
由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物像等等.一般情况下,对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.用对称性解题的关键是敏锐地抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题.
五、全过程法、逆向思维法处理物理问题
方法简介
(一)全过程法
全过程法又称为过程整体法,它是相对于程序法而言的。它是将研究对象所经历的各个不同物理过程合并成一个整体过程来研究分析。经全过程整体分析后,可以对全过程一步列式求解。这样减少了解题步骤,减少了所列的方程数,大大简化了解题过程,使多过程的综合题的求解变的简捷方便。
动能定理、动量定理都是状态变化的定理,过程量等于状态量的变化。状态量的变化只取决于始末状态,不涉及中间状态。同样,机械能守恒定律、动量守恒定律是状态量守恒定律,只要全过程符合守恒条件,就有初状态的状态量和末状态的状态量守恒,也不必考虑中间状态量。因此,对有关状态量的计算,只要各过程遵循上述定理、定律,就有可能将几个过程合并起来,用全过程都适用的物理规一次列出方程,直接求得结果。
(二)逆向思维法
所谓“逆向思维”,简单来说就是“倒过来想一想”.这种方法用于解物理题,特别是某些难题,很有好处.下面通过去年高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况
递推法解题
方法简介
递推法是利用问题本身所具有的一种递推关系求解问题的一种方法,即当问题中涉及相互联系的物体或过程较多,相互作用或过程具有一定的重复性并且有规律时,应根据题目特点应用归纳的数学思想将所研究的问题归类,然后求出通式。 具体方法是先分析某一次作用的情况,得出结论;再根据多次作用的重复性和它们的共同点,把结论推广,然后结合数学知识求解。用递推法解题的关键是导出联系相邻两次作用的递推关系式。
物理实验的基本思想方法
1.等效法
等效法是科学研究中常用的一种思维方法.对一些复杂问题采用等效法,可将其变换成理想的、简单的、已知规律的过程来处理,常使问题的解决得以简化.因此,等效法也是物理实验中常用的方法.如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个互成角度的弹簧秤同时拉橡皮条时产生的效果相同——使结点到达同一位置O,即要在合力与两分力等效的条件下,才能找出它们之间合成与分解时所遵循的关系——平行四边形定则.又如在“验证动量守恒定律”的实验中,用小球的水平位移代替小球的水平速度;在“验证牛顿第二定律”的实验中,通过调节木板的倾斜度使重力的分力抵消摩擦力而等效于物体不受摩擦力作用.还有,电学实验中电流表的改装、用替换法测电阻等,都是等效法的应用.
2.转换法
将某些不易显示、不易直接测量的物理量转化为易于显示、易于测量的物理量的方法称为转换法(间接测量法).转换法是物理实验常用的方法.如:弹簧测力计是把力的大小转换为弹簧的伸长量;打点计时器是把流逝的时间转换成振针的周期性振动;电流表是利用电流在磁场中受力,把电流转化为指针的偏转角;用单摆测定重力加速度g是通过公式T=2πg(L)把g的测量转换为T和L的测量,等等.
3.留迹法
留迹法是利用某些特殊的手段,把一些瞬间即逝的现象(如位置、轨迹等)记录下来,以便于此后对其进行仔细研究的一种方法.留迹法也是物理实验中常用的方法.如:用打点计时器打在纸带上的点迹记录小车的位移与时间之间的关系;用描迹法描绘平抛运动的轨迹;在“测定玻璃的折射率”的实验中,用大头针的插孔显示入射光线和出射光线的方位;在描绘电场中等势线的实验中,用探针通过复写纸在白纸上留下的痕迹记录等势点的位置等等,都是留迹法在实验中的应用.
4.累积法
累积法是把某些难以直接准确测量的微小量累积后测量,以提高测量的准确度的一种实验方法.如:在缺乏高精密度的测量仪器的情况下测细金属丝的直径,常把细金属丝绕在圆柱体上测若干匝的总长度,然后除以匝数就可求出细金属丝的直径;测一张薄纸的厚度时,常先测出若干页纸的总厚度,再除以被测页数即所求每页纸的厚度;在“用单摆测定重力加速度”的实验中,单摆周期的测定就是通过测单摆完成多次全振动的总时间除以全振动的次数,以减小个人反应时间造成的误差影响等.
5.模拟法
模拟法是一种间接实验方法,它是通过与原型相似的模型来说明原型的规律性的.模拟法在中学物理实验中的典型应用是“用描迹法画出电场中平面上的等势线”这一实验,由于直接描绘静电场的等势线很困难,而恒定电流的电场与静电场相似,所以用恒定电流的电场来模拟静电场,通过它来了解静电场中等势线的分布情况.
6.控制变量法
在多因素的实验中,可以先控制一些量不变,依次研究某一个因素的影响.如在“验证牛顿第二定律”的实验中,可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系;最后综合得出加速度与质量、力的关系.
三、实验数据的处理方法
1.列表法
在记录和处理数据时,常常将数据列成表格.数据列表可以简单而又明确地表示出有关物理量之间的关系,有助于找出物理量之间联系的规律性.
列表的要求:
(1)写明表的标题或加上必要的说明;
(2)必须交代清楚表中各符号所表示的物理量的意义,并写明单位;
(3)表中数据应是正确反映测量结果的有效数字.
2.平均值法
现行教材中只介绍了算术平均值,即把测定的数据相加求和,然后除以测量的次数.必须注意的是,求平均值时应该按测量仪器的精确度决定应保留的有效数字的位数.
3.图象法
图象法是物理实验中广泛应用的处理实验数据的方法.图象法的最大优点是直观、简便.在探索物理量之间的关系时,由图象可以直观地看出物理量之间的函数关系或变化趋势,由此建立经验公式.
作图的规则:
(1)作图一定要用坐标纸,坐标纸的大小要根据有效数字的位数和结果的需要来定;
(2)要标明轴名、单位,在轴上每隔一定的间距按有效数字的位数标明数值;
(3)图上的连线不一定通过所有的数据点,而应尽量使数据点合理地分布在线的两侧;
(4)作图时常通过选取适当的坐标轴使图线线性化,即“变曲为直”.
虽然图象法有许多优点,但在图纸上连线时有较大的主观任意性,另外连线的粗细、图纸的大小、图纸本身的均匀程度等,都对结果的准确性有影响.
学习物理非常注重过程,一个认知、理解、运用的过程。
1.认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。
2.理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。
3.运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。
所以,在学习时,首先,不要有惧怕的心理,因为你前一段没学好的经历可能会暗示你什么,这可能会导致你恶性循环。努力告诉自己“我能行!!!”其实心理暗示很有用哦!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。
其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。
最后一点也是最重要的一点,就是一定要做好及时总结。例如,上次考试的卷子发下来了,虽然认真订正过了,但还要想想为什么会错?正确答案是怎么算出来的?如果下次再考到还会错吗?等等。
我想,通过这些学习方法,一定能学好物理的。
1.读题(别认为这是废的一步,而草草的掠过,因为题中有很多信息比如说:光滑的平面,不计轻质弹簧......)
2.建立物理模型(很多物理老师都会说建立模型,但是又讲的很神秘......其实这个就是要看你平时的积累了,比如说:飞机高空抛物就要想到小球的平抛运动等等)
3.联想公式(重力场里面就要想平抛的公式,磁场里面就要像洛伦兹力,安培力等等公式,依此类推)
4.组合数据和公式(将所有有关公式回想好了之后,联系题目给的条件选取最好的公式.比如:题目是圆周运动,给了速度和就要想到mv²/r)
5.列出公式(记住,只能按照自己的思考步骤把公式列出来,但是千万不要把数字带进去!比如1/2mv²=mgh就不要把每个物理量的数字带进去了,但是1/2要带进去)
6.就是算结果了,但是不要算错了!
物理题其实只要把物理过程弄明白,基本的公式原理都知道,题基本上就能解出来了。很多老师在课堂上讲得都是物理过程,所以把物理过程搞清楚对于解题很重要,回答的不一定很对,希望对你有些帮助!