在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是?
解:过D作DP⊥AB ,P为垂足;再将DP 延长一倍至F,使PF=DP;连接CF与AB相交于E,那么
这个位置就是使EC+ED最小的位置;此时:
EC+ED=EC+EF=CF=√[CD²+DF²-2CD×DFcos∠CDF]
其中,CD=1,DF=2DP=2DBcos45°=√2,cos∠CDF=cos135°=-cos45°=-√2/2,代入上式即得:(EC+ED)min=CF=√[1+2+2×1×(√2)×(√2)/2]=√(1+2+2)=√5
下面证明√5是EC+ED的最小值。
现在偏离所取的位置在AB上任找一点E′,连接CE′,DE′,FE′,按作图法,AB是DF的垂直平分线,故CE′+DE′=CE′+FE′>CF=√5(CE′E是三角形,三角形两边之和必大于第三边).
如图,将图补成一个正方形,三角形EDB全等于三角形EBD'.
所以ED=ED'
所以最短为CD'=根号5
谢谢~~~
解:作CW⊥AB于W,DP⊥AB于P。设EB=x,EC+ED的值为y.
∵△ABC中,AC=BC=2,∠ACB=90度,D是BC边的中点,E是AB边上一动点,CW⊥AB于W,DP⊥AB于P。
∴Rt△ACB的以AB为底的高CW=为[sin(tan^-1AC/BC)]·CB=sin45°·2=√2=WB,又D是BC边的中点,CW‖DP,即Rt△CWB≌Rt△DPB,于是有CW/DP=CB/DB→√2/DP=1/2,得:DP=(√2)/2,即PB=DP=(√2)/2。又EB=x,EC+ED的值为y。
∴当0
∴当x=(5√2)/6时,有EC+ED最小值,且为(√74+√26)/6]。(这里求EC+ED,最好是用图解法)
要求最短距离,在初中里无非是利用两点之间线段最短。而这要运用到轴对称。
做D关于AB对称于点E。所以CE=EC+ED的最小值
所以易得:三角形DBE是等腰直角三角形,三角形CBE是直角三角形。
又易得:DB=BE=1
CB=2
所以利用勾股定理得:CE=根号5
即:EC+ED的最小值=根号5
答:令点E在AB中点上。
由题意知:AC=CB,CE=CE,AE=BE.所以△ACE与△CEB全等。
所以∠AEC=∠CEB=90度,CE垂直于AB,所以当E为AB中点时CE为最短,为根号2,
因为AB =根号8 ,所以AE=AB=CE=1/2AB=根号2,
因为D为CB中点,所以ED垂直于CB ,ED=1
所以EC+ED=根号2+1
我算是根号2+1 两个数加一起怎么是根号5呢? 不懂?