将一个两位数的十位数字与个位数字互换,得到一个新的两位数,这两个两位数字差能否被9整除,为什么?

解完题必有重"赏"帮帮忙!!!!!!!!!!!!!!!!!过程
2025-01-01 00:37:08
推荐回答(4个)
回答1:

可以。

解:设原来的两位数个位数为a,十位数为b,则原来两位数为:10b+a

个位与10位数对调后两位数为:10a+b

两数作差得:

(10b+a)-(10a+b)

=10b+a-10a-b

=9b-9a

=9(b-a)

而9(b-a)有因数9,所以一定为9的倍数

所以原来的两位数与新两位数的差一定能被9整除。

扩展资料:

1、若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果和太大或心算不易看出是否19的倍数,就需要继续使用能被13整除特征的方法。

2、若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

(16)能被23整除的数的特征

若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

我们可以这样证明:首先,位数是3的倍数,所以他就含有因子3,把他这个数的位数称为n;其次每位上的数字是一样的,把每位上的数字称为m,所以这个数字的数字和就是:n*m。但n含有因子3,那么它们的数字和就含有因子3,结论得证。

参考资料来源:百度百科-整除

回答2:

不能,因为无论如何两个两位数十位和个位交换后相减都不能大于九,有一种情况就是90,相减等于九能被九整除,但交换十位和个位后又不是一个两位数了。所以,不能。

回答3:

解:设原来十位数上的数字为X,个位数为(X+Y)。
依题意:
10X+(X+Y)-〈10(X+Y)+X 〉
=-9Y
∴可以

回答4:

可以。
只要个位和十位数不同,就可以。