已知函数f(x)=(1+1⼀tanx)sin^2x+msin(x+π⼀4)sin(x-π4),当m=0时,

2024-12-13 17:40:27
推荐回答(3个)
回答1:

1、将m=0带入f(x),f(x)=(1+1/tanx)sin^2x利用半角公式化简整理得f(x)=1+√2*sin(2x-π/4)/2
x属于[π/8,3π/4],2x-π/4属于[0,5π/4],sin(2x-π/4)∈[-√2/2,1],带入可得f(x)的取值范围[0,1+√2/2]
2、tana=sina/cosa=2,sin^2a+cos^2a=1,sina=2√5/5,cos=√5/5,
带入求得m=-2

回答2:

主要还是化简,先看前面一部分(1+1/tanx)sin^2x
其中
1+1/tanx
=1+cosx/sinx
=(sinx+cosx)/sinx
(1+1/tanx)sin^2x
=sinx(sinx+cosx)
=sin^2x+sinxcosx
=1/2[1-cos2x]+1/2sin2x
=1/2+1/2[sin2x-cos2x]
=1/2+√2/2sin(2x-π/4) 这个注意下,是个技巧,以后经常用的要掌握一下
对于本题,m=0
f(x)=1/2+ √2/2sin(2x-π/4)
当x在区间[π/8,3π/4]
0<=2x-π/4<=5π/4
可以看出在这个范围内2x-π/4=π/2时去的最大值,在2x-π/4=5π/4取得最小值
-√2/2<=sin(2x-π/4)<=1
-1/2<=√2/2sin(2x-π/4)<=- √2/2
0<=1/2+ √2/2sin(2x-π/4)<=(1+√2)/2
也就是0<=f(x)<=(1+√2)/2
这个就是取值范围

回答3:

2.将函数f(X)=(1+1/tanx)sin^2x+msin(x+π/4)sin(x-π/4) 化简得:
=(1+cosx/sinx)*2sinxcosx+m(sinxcosπ/4+cosxsinπ/4)(sinxcosπ/4-cosxsinπ/4)
=2sinxcosx+2(cosx)^2+1/2[(sinx)^2-(cosx)^2]m
由tana=2得
sina=2cosa
所以:f(a)=(sina)^2+2(cosa)^2+1/2*3m(cosa)^2
=1+(cosa)^2+3m/2*(cosa)^2
=3/5
所以得:3m/2*(cosa)^2+2/5[(cosa)^2+(sina)^2]+(cosa)^2=0
3m/2*(cosa)^2+7/5*(cosa)^2+2/5*(sina)^2=0
因为tana=2
将上式同除于(cosa)^2得((cosa)^2由tana=2知不会为零):
3m/2+7/5+2/5*4=0
所以:m=-2