求函数y=√x^2+1 +√x^2—4x+8的最小值?谢谢了

2024-12-15 18:00:12
推荐回答(3个)
回答1:

y=√(x^2+1) +√(x^2—4x+8)
=√[(x-0)^2+(0-1)^2]+√[(x-2)^2+(0-2)^2],
这表示在x轴上的点(x,0)到点(0,1)和点(2,2)的距离和
所以最短距离=√(4+9)=√13

回答2:

解:如图:

Y=√(X²+1)+√(X²-4X+8)

 =√(X²+1²)√[(x-2)²+2²]

这表示在x轴上的点到点(0,1)和点(2,2)的距离和

所以最短距离=√(4+9)=√13

回答3:

应该是y=√(x^2+1) +√(x^2—4x+8)吧