直接化简最后一项,1+2+。。。+n=n(n+1)/2,所以(1+2+3+...+n)分之1=n(n+1)分之2
每一项都这样化简之后,提取公共的2,用裂项相加法最后的式子是:
2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/n-1/n+1)=2(1/2-1/n+1)=n-1/n+1
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+1/(1+2+3+4+5)+...+1/(1+2+3+4+...+n)
=1+2*(1/2-1/3)+2*(1/3-1/4)+2*(1/4-1/5)+……+2*[1/(n-1)-1/n]
=1+2*(1/2-1/n)
=2-2/n
该数列的通项an=(1+2+3+…+n)分之1
=1/(1+2+3+…+n)=2/[n(n+1)=2[1/n-1/(n+1)].
数列的前n次项和Sn=a1+a2+a3+……+an
=2[(1-1/2)+(1/2-1/3)+ ……+(1/n-1/(n+1))]
=2[1-1/(n+1)]= 2n/(n+1).