应该是1999/(1999+1999/2000)+1/2001
=1999/[1999×(1+1/2000)]+1/2001
=1/(1+1/2000)+1/2001
=2000/2001+1/2001
=1
解:=1999*2000/(1999*2001)+)+1/2000
=2000/2001+1/2000
=1-1/2001+1/2000
=1+1/(2000*2001)
=4002001/4002000
望楼主采纳!!!!
1999/(1999+1999/2000)+1/2000
=1999/[1999(1+1/2000)]+1/2000
=1/(2001/2000)+1/2000
=2000/2001+1/2000
=(2000*2000+2001)/2001*2000
=4002001/4002000
1999/(1999+1999/2000)+1/2000
=1999/[1999*(2000+1)/2000]+1/2000
=1999*2000/1999*2001+1/2000
=2000/2001+1/2000
=(2000*2000+2000+1)/(2000*2001)
={【2000*(2000+1)】+1}/(2000*2001)
=1+1/(2000*2001)
1999/(1999+1999/2000)+1/2001
=1999/{[1999*2000+1999]/2000}+1/2001
=1999*2000/(1999*2000+1999*1)+1/2001
=1999*[2000/1999*(2000+1)]+//2001
=1999*[2000/1999*2001]+1/2001
=2000/2001+1/2001
=1