解方程:(1) (x²-5x)/(x+1)+24(x+1)/x(x-5)+14=0;(2). 2(x²+1)/(x+1)+6(x+1)/(x²+1)=7;
(3)(x⁴+2x+1)/x²+(x²+1)/x=2 .
解:(1) (x²-5x)/(x+1)+24(x+1)/x(x-5)+14=0
用x(x+1)(x-5)乘方程两边得:x²(x-5)²+24(x+1)²+14x(x+1)(x-5)=0
展开化简得:x⁴+4x³-7x²-22x+24=0
x³(x-1)+5x²(x-1)-2x(x-1)-24(x-1)=0
(x-1)(x³+5x²-2x-24)=0
(x-1)[x²(x-2)+7x(x-2)+12(x-2)]=0
(x-1)(x-2)(x²+7x+12)=0
(x-1)(x-2)(x+3)(x+4)=0
故x₁=1;x₂=2;x₃-3;x₄=-4.
(2). 2(x²+1)/(x+1)+6(x+1)/(x²+1)=7
去分母得 2(x²+1)²+6(x+1)²=7(x+1)(x²+1)
展开化简得 2x⁴-7x³+3x²+5x+1=0
用待定系数法可分解为 (2x² -3x-1)(x²-2x-1)=0
由2x²-3x-1=0,得x₁=(3+√17)/4; x₂=(3-√17)/4;
由x²-2x-1=0,得x₃=(2+√8)/2=1+√2; x₄=1-√2.
(3)(x⁴+2x+1)/x²+(x²+1)/x=2 .
去分母得 x⁴+2x+1+x(x²+1)=2x²
展开化简得 x⁴+x³-2x²+3x+1=0
(这个有点难,今天要休息了,明天再做。)