一元三次方程有没有就像一元二次方程求根公式那样通用的解法?

如ax^3+bx^2+cx+d=0(a≠0)的求根公式
2024-12-28 09:49:37
推荐回答(5个)
回答1:

一元三次方程求根公式的解法

-------摘自高中数学网站

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

x^y就是x的y次方
好复杂的说

回答2:

三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。   【盛金公式】   一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。   重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,   总判别式:Δ=B^2-4AC。   当A=B=0时,盛金公式①:   X⑴=X⑵=X⑶=-b/(3a)=-c/b=-3d/c。   当Δ=B^2-4AC>0时,盛金公式②:   X⑴=(-b-Y⑴^(1/3)-Y⑵^(1/3))/(3a);   X(2,3)=(-2b+Y⑴^(1/3)+Y⑵^(1/3))/(6a)±i3^(1/2)(Y⑴^(1/3)-Y⑵^(1/3))/(6a);   其中Y(1,2)=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。   当Δ=B^2-4AC=0时,盛金公式③:   X⑴=-b/a+K;X⑵=X⑶=-K/2,   其中K=B/A,(A≠0)。   当Δ=B^2-4AC<0时,盛金公式④:   X⑴=(-b-2A^(1/2)cos(θ/3))/(3a);   X(2,3)=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a);   其中θ=arccosT,T=(2Ab-3aB)/(2A^(3/2)),(A>0,-10时,方程有一个实根和一对共轭虚根;   ③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根;   ④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。   【盛金定理】   当b=0,c=0时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A≤0时,盛金公式④无意义;当T<-1或T>1时,盛金公式④无意义。   当b=0,c=0时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A≤0的值?盛金公式④是否存在T<-1或T>1的值?盛金定理给出如下回答:   盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。   盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式①解题)。   盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。   盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式②解题)。   盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式②解题)。   盛金定理6:当Δ=0时,若B=0,则必定有A=0(此时,适用盛金公式①解题)。   盛金定理7:当Δ=0时,若B≠0,盛金公式③一定不存在A≤0的值(此时,适用盛金公式③解题)。   盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。   盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-10时,不一定有A<0。   盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。   当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式②中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。   盛金公式解法的以上结论,发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。(NATURAL SCIENCE JOURNAL OF HAINAN TEACHERES COLLEGE , Hainan Province, China. Vol. 2, No. 2;Dec,1989), A new extracting formula and a new distinguishing means on the one variable cubic equation., Fan Shengjin. PP·91—98 .

回答3:

顺便说明为什么一元五次(或以上)方程没有求根公式 一元三次方程求根公式的解法 -摘自高中数学网站 一元三次方程的求根公式用通常的演绎思维是作不

回答4:

一元二次方程求根公式:
当Δ=b^2-4ac≥0时,x=[-b±根号(b^2-4ac)]/2a

一元二次方程配方法:
ax^2+bx+c=0(a,b,c是常数)
x^2+bx/a+c/a=0
(x+b/2a)^2=(b^2-4ac)/4a^2
x+b/2a=±根号(b^2-4ac)/2a
x=[-b±根号(b^2-4ac)]/2a

回答5:

盛金公式