解:由题意可知0令y=(1/a-1)(1/b-1)(1/c-1) =1/abc-1/ac-1/bc+1/c-1/ab+1/a+1/b-1 =1/abc+(1/a+1/b+1/c)-(1/ab+1/bc+1/ac)-1 =1/abc-(a+b+c)/abc+(1/a+1/b+1/c)-1 代入:a+b+c=1 则y=1/abc-1/abc+(1/a+1/b+1/c)-1 =1/a+1/b+1/c-1当a=b=c=1/3时,y取最小值:y=1/(1/3)+1/(1/3)+1/(1/3)-1=8当a,b,c中任何一个取趋向于0的小数,y取值为无穷大所以y的取值范围为:y>8即:(1/a-1)(1/b-1)(1/c-1)>8
显然有00,1/b-1>0,1/c-1>0 (1/a-1)(1/b-1)(1/c-1)≤(1/a+1/b+1/c-3)^3/27