您好!
分析:1/1×3×5=1/4×(1/1×3 -1/3×5)
1/3×5×7=1/4×(1/3×5 -1/5×7)
1/5×7×9=1/4×(1/5×7 - 1/7×9)
1/7×9×11=1/4×(1/7×9 -1/9×11)
.....................
1/11×13×15=1/4×(1/11×13 -1/13×15)
所有的等式相加有
1/1×3×5+1/3×5×7+1/5×7×9+.....+1/11×13×15
=1/4×(1/1×3 -1/3×5 +1/3×5 -1/5×7+....+1/11×13 -1/13×15)
=1/4×(1/1×3 - 1/13×15)
=16/195
结论:1/n(n+1)(n+2)=1/2×[1/n(n+1) - 1/(n+1)(n+2)]
1/n(n+2)(n+4)=1/4×[1/n(n+2) - 1/(n+2)(n+4)]
1/1*3*5+1/3*5*7+1/5*7*9+1/7*9*11+1/9*11*13+1/11*13*15
=1/2*(1/1*3-1/3*5)+1/2*(1/3*5-1/5*7)+1/2*(1/5*7-1/7*9)+1/2*(1/7*9-1/9*11)+1/2*(1/9*11-1/11*13)+1/2*(1/11*13-1/13*15)
=1/2*(1/1*3-1/3*5+1/3*5-1/5*7+1/5*7-1/7*9+1/7*9-1/9*11+1/9*11-1/11*13+1/11*13-1/13*15)
=1/2*(1/1*3-1/13*15)
=1/2*38/195
=19/195