如图一,点P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点EFGH分别是各边中点,顺次联结EFGH
(1)证明EFGH是菱形
(2)当点P在AB上方时,若∠APC=∠BPD=90°,其余条件不变,如图二,判断EFGH的形状,说明理由
1)首先,可以证明EFGH是平行四边形(课本上都有例题的,顺次连接四边形的四边中点所得四边形是平行四边形)
再证明三角形APD与CPB全等
得AD=BC
AD=2EH,BC=2HG,所以EH=HG
所以EFGH是菱形
2)四边形EFGH是正方形
同理可得EFGH是平行四边形,三角形APD与CPB全等
现只要再证明EH垂直HG
设AD交BC于M
有角CMD=CAD+ACB=CAD+PCB+ACP=CAD+PAD+ACP=PAC+ACP=90度
所以AD垂直BC
而EH平行AD,HG平行BC
所以EH垂直HG
所以EFGH是正方形
真够喷血,咱路过。。
你自己在网上搜索吧,那样的话你想搜索多少就多少