求和: 1⼀2!+2⼀3!+3⼀4!+...+n⼀(n+1)!

2024-12-04 09:50:04
推荐回答(2个)
回答1:

n/(n+1)!
=[(n+1)-1]/(n+1)!
=(n+1)/(n+1)!-1/(n+1)!
=1/n!-1/(n+1)!
所以原式=1/1!-1/2!+1/2!-1/3!+……+1/n!-1/(n+1)!
=1-1/(n+1)!

回答2:

1 - 1/(1 + n)!