已知数列an中,a1=1,an+1=(1+1⼀n)an+(n+1)⼀2^n,若bn=an⼀n,求bn的通项

2025-01-07 20:38:34
推荐回答(2个)
回答1:

将第三个等式两边同除(n+1)得,an+1/n+1=an/n+1/2^n,由bn=an/n得,bn+1=bn+1/2^n=bn-1+1/2^n-1+1/2^n=...=b1+1/2+...+1/2^n=2-1/2^n,那么bn=2-1/2^n-1

回答2:

令an=nbn带入等式得到bn+1-bn=(n+1)/2^n
bn=b1+1/2^1+...+1/2^(n-1)=2*(1-(1/2)^n)