去括号得到:
(2^2-1^2)+(4^2-3^2)+(6^2-5^2)+....(2006^2-2005^2)
=(1+2)+(3+4)+(5+6)+....(2005+2006) 平方差公式
=(1+2006)×2006÷2
=2007×1003
=2013021
(2 ^2+4^2+6^2+...+2006^2)-(1^2+3^2+5^2+...+2005^2)
=2 ^2+4^2+6^2+...+2006^2-1^2-3^2-5^2-...-2005^2
=(2^2-1^2)+(4^2-3^2)+(6^2-5^2)+..+(2006^2-2005^2)
=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+...+(2006+2005)(2006-2005)
=1+2+3+4+5+6+....+2005+2006
=(1+2006)*2006/2
=2013021
解:原式=(2^2-1^2)+(4^2-3^2)+...+(2006^2-2005^2)
=(2+1)+(4+3)+...+(2006+2005)
=1+2+3+...+2006
=(1+2006)*2006/2
=2013021
解:原式=(2^2-1^2)+(4^2-3^2)+(6^2-5^2)+······+(2006^2-2005^2)
=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+······+(2006-2005)(2006+2005)
=1+2+3+4+5+6+········+2005+2006
=(1+2006)+(2+2005)+(3+2004)+·········(1003+1004)
=2007X1003
=2013021
交换一下位置 :原式=(2^2-1^2)+(4^2-3^2)+(6^2-5^2)+...+(2006^2-2005^2)
=(2+1)(2-1)+(4+3)(4-3)+...+(2006+2005)(2006-2005)
=1+2+3+4+...+2005+2006
=(1+2006)*2006/2=2007*1003=?
(2^2-1^2)+(4^2-3^2)+......+(2006^2-2005^2)=(2+1)(2-1)+(4+3)(4-3)+.....+(2006+2005)(2006-2005)
=1+2+3+4+.......+2005+2006
=2006/2(1+2006)
=2013021