求初二一次函数应用题

2024-12-23 07:47:48
推荐回答(5个)
回答1:

一次函数应用题专题训练
1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)

2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).
(1)求a的值.
(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.
(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?

3.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为 、 (km), 、 与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为 km, ;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式 粗加工后销售 精加工后销售
每吨获利(元) 1000 2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
⑵如果先进行精加工,然后进行粗加工.
①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?

5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离 (千米)与乙车出发 (时)的函数的部分图像
(1)A、B两地的距离是 千米,甲车出发 小时到达C地;
(2)求乙车出发2小时后直至到达A地的过程中, 与 的函数关系式及 的取值范围,并在图16中补全函数图像;
(3)乙车出发多长时间,两车相距150千米

6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量 (升)与行驶时间 (小时)之间的关系如图所示.
请根据图象回答下列问题:
(1)汽车行驶 小时后加油,中途加油 升;
(2)求加油前油箱剩余油量 与行驶时间 的函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?

8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:
补贴额度 新家电销售价格的10%
说明:电视补贴的金额最多不超过400元/台;
洗衣机补贴的金额最多不超过250元/台;
冰箱补贴的金额最多不超过300元/台.

为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:
家电名称 进价(元/台) 售价(元/台)
电视 3900 4300
洗衣机 1500 1800
冰箱 2000 2400
设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)
(1)请分别求出y与x和w与x的函数表达式;
(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?

1.(2010浙江湖州)【答案】(1)线段AB所在直线的函数解析式为:y=kx+b,
将(1.5,70)、(2,0)代入得: ,解得: ,
所以线段AB所在直线的函数解析式为:y=-140x+280,当x=0时,
y=280,所以甲乙两地之间的距离280千米.
(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:
,解得: ,所以快车的速度为80千米/时,
所以 .
(3)如图所示.
2.(1)由图象知, ,所以 ;
(2)设BC的解析式为 ,则把(40,320)和(104,0)代入,得 ,解得 ,因此 ,当 时, ,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;
(3)设同时开放 个窗口,则由题知 ,解得 ,因为 为整数,所以 ,即至少需要同时开放6个售票窗口。

3. 解:(1)120, ;
(2)由点(3,90)求得, .
当 >0.5时,由点(0.5,0),(2,90)求得, .
当 时, ,解得, .
此时 .所以点P的坐标为(1,30)
该点坐标的意义为:两船出发1 h后,甲船追上乙船,此时两船离B港的距离为30 km.
求点P的坐标的另一种方法:
由图可得,甲的速度为 (km/h),乙的速度为 (km/h).
则甲追上乙所用的时间为 (h).此时乙船行驶的路程为 (km).
所以点P的坐标为(1,30).
(3)①当 ≤0.5时,由点(0,30),(0.5,0)求得, .
依题意, ≤10. 解得, ≥ .不合题意.
②当0.5< ≤1时,依题意, ≤10.
解得, ≥ .所以 ≤ ≤1.
③当 >1时,依题意, ≤10.
解得, ≤ .所以1< ≤ .
综上所述,当 ≤ ≤ 时,甲、乙两船可以相互望见.

4.(2010四川内江)【答案】解:⑴设应安排x天进行精加工,y天进行粗加工, 1分
根据题意得: x+y=12,5x+15y=140. 3分
解得x=4,y=8.
答:应安排4天进行精加工,8天进行粗加工. 4分
⑵①精加工m吨,则粗加工(140-m)吨,根据题意得:
W=2000m+1000(140-m)
=1000m+140000 . 6分
  ②∵要求在不超过10天的时间内将所有蔬菜加工完,
∴m5+140-m15≤10 解得 m≤5. 8分
∴0<m≤5.
又∵在一次函数W=1000m+140000中,k=1000>0,
∴W随m的增大而增大,
∴当m=5时,Wmax=1000×5+140000=145000.  9分
∴精加工天数为5÷5=1,
粗加工天数为(140-5)÷15=9.
∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元. 10分.

5.(2010辽宁大连) 【答案】

6.(2010广东茂名)【答案】解:(1)3,31.
(2)设 与 的函数关系式是 ,根据题意,得:
解得: 因此,加油前油箱剩油量 与行驶时间 的函数关系式是: .(3)由图可知汽车每小时用油 (升),
所以汽车要准备油 (升),因为45升>36升,所以油箱中的油够用.
7.(2010 广东汕头)【答案】解:(1)设甲车租x辆,则乙车租(10-x)辆,根据题意,得

解之得
∵x是整数
∴x=4、5、6、7
∴所有可行的租车方案共有四种:①甲车4辆、乙车6辆;②甲车5辆、乙车5辆;③甲车6辆、乙车4辆;④甲车7辆、乙车3辆.
(2)设租车的总费用为y元,则y=2000x+1800(10-x),
即y=200x+18000
∵k=200>0,
∴y随x的增大而增大
∵x=4、5、6、7
∴x=4时,y有最小值为18800元,即租用甲车4辆、乙车6辆,费用最省.
8(2010辽宁本溪)
【答案】

回答2:

【解题方法指导】
例1. (1)y与x成正比例函数,当 时,y=5.求这个正比例函数的解析式.
(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.
解:(1)设所求正比例函数的解析式为
把 ,y=5代入上式
得 ,解之,得
∴所求正比例函数的解析式为
(2)设所求一次函数的解析式为
∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足 ,将 、y=2和x=3、 分别代入上式,得

解得
∴此一次函数的解析式为
点评:(1) 不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.

例2. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量x的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.
解:

图象如下图所示

点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.

例3. 已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.
分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.

解:设所求一次函数解析式为
∵点P的坐标为(-2,0)
∴|OP|=2
设函数图象与y轴交于点B(0,m)
根据题意,SΔPOB=3

∴|m|=3

∴一次函数的图象与y轴交于B1(0,3)或B2(0,-3)
将P(-2,0)及B1(0,3)或P(-2,0)及B2(0,-3)的坐标代入y=kx+b中,得

解得
∴所求一次函数的解析式为
点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.
【综合测试】
一、选择题:
1. 若正比例函数y=kx的图象经过一、三象限,则k的取值范围是( )
A. B. C. D.
2. 一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的函数关系用图象表示为( )

3. (北京市)一次函数 的图象不经过的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
4. (陕西省课改实验区)直线 与x轴、y轴所围成的三角形的面积为( )
A. 3 B. 6 C. D.
5. (海南省)一次函数 的大致图象是( )

二、填空题:
1. 若一次函数y=kx+b的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.
2. (2006年北京市中考题)若正比例函数y=kx的图象经过点(1,2),则此函数的解析式为_____________.

三、
一次函数的图象与y轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.

四、(芜湖市课改实验区)
某种内燃动力机车在青藏铁路试验运行前,测得该种机车机械效率η和海拔高度h( ,单位km)的函数关系式如图所示.
(1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系;
(2)求在海拔3km的高度运行时,该机车的机械效率为多少?

五、(浙江省丽水市)
如图建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.
(1)求羽毛球飞行轨迹所在直线的解析式;
(2)在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到0.1米)

【综合测试答案】
一、选择题:
1. B 2. B 3. D 4. A 5. B
二、填空题:
1. 2.
三、分析:一次函数的解析式y=kx+b有两个待定系数,需要利用两个条件建立两个方程.题目中一个条件比较明显,即图象和y轴的交点的纵坐标是-3,另一个条件比较隐蔽,需从“和坐标轴围成的面积为6”确定.

解:设一次函数的解析式为 ,
∵函数图象和y轴的交点的纵坐标是-3,

∴函数的解析式为 .
求这个函数图象与x轴的交点,即解方程组:

即交点坐标为( ,0)
由于一次函数图象与两条坐标轴围成的直角三角形的面积为6,由三角形面积公式,得



∴这个一次函数的解析式为
四、解:(1)由图象可知, 与h的函数关系为一次函数

∵此函数图象经过(0,40%),(5,20%)两点
∴ 解得

(2)当h=3km时,
∴当机车运行在海拔高度为3km的时候,该机车的机械效率为28%
五、解:(1)依题意,设直线BF为y=kx+b
∵OD=1.55,DE=0.05

即点E的坐标为(0,1.6)
又∵OA=OB=6.7
∴点B的坐标为(-6.7,0)
由于直线经过点E(0,1.6)和点B(-6.7,0),得
解得 ,即
(2)设点F的坐标为(5, ),则当x=5时,

则FC=2.8
∴在这次直线扣杀中,羽毛球拍击球点离地面的高度是2.8米

回答3:

考数学重在方法与思维,不是考查繁烦的计算。
提高数学解题能力,一是模仿。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。
二是实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。
三是要要动脑筋。例如,对于课本的定理的证明,例题的解法、证法能读懂听懂还不够,你必须明白人家是怎样想出那个解题方法的,为什么要那样解题?有没有其它的解题途径?

看看这个吧
2010年上海中考数学压轴题分析
http://www.zx98.com/maths/xuef/xuefa/201012/13140.html

回答4:

http://zhidao.baidu.com/question/78123455.html?an=0&si=7

http://zhidao.baidu.com/question/217071603.html?an=0&si=1

http://zhidao.baidu.com/q?ct=17&tn=ikaslist&rn=10&word=%B3%F5%B6%FE%20%D2%BB%B4%CE%BA%AF%CA%FD&lm=0&pn=0

回答5:

你可以问老师啊。老师的方法都很好,而且很好懂。真的,我们数学老师就很好。