已知向量a=(√3sinx,cosx),b=(cosx,cosx),c=(2√3,1)

2025-01-01 00:09:16
推荐回答(1个)
回答1:

(1)
a//b
=> cosx/(√3sinx) = cosx/cosx
cosx = √3sinx
tanx = 1/√3
sinx. cosx = (1/2) .(√3/2)
= √3/4
(2)
f(x) = a.b
= (√3sinx,cosx).(cosx,cosx)
= √3sinx(cosx)+(cosx)^2
f'(x) = √3[ -(sinx)^2 + (cosx)^2] - 2cosxsinx
= √3cos2x -sin2x >0 ( for 0f(x) is increasing on (for 0
= f(π/6)
= 3/4+ 3/4
= 3/2
a.b 的值域 = (0, 3/2]