一纳米等于10亿分之一米,自从扫描隧道显微镜发明以后世界上便诞生了以0.1纳米至。100纳米这样的尺度为研究对象的前沿科学这就是纳米技术。
扫描隧道显微镜发明后诞生的 肯定对呦 (*^__^*) 嘻嘻……
随着加工仪器,制造技术的精密化,人们在追求更小更精细的物理器件方面得到了长足的发展,纳米技术由此产生。科学家们发现,在纳米级(10-10~10-7nm)的范围内认知和改造自然,通过直接操作和安排原子、分子创造物质,就能通过特殊的制备方法制造出的有特定的声、光、电、磁、热性能的特殊材料,进而应用到生活生产等各个领域。
比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。也就是说,通过纳米技术得到了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。
正是因为纳米材料表现出来的特殊性和难以替代性,和在各个领域的广泛应用,所以纳米科技成为了21实际最重要的高端科技之一,当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。
简而言之,随着科学研究实验工具的发展,科学家对原子分子的研究达到了纳米级的程度,在此基础上科学家又发现,对原子分子在纳米级上进行重新组合排列,能得到有着其他特殊性质的新的材料,纳米科技就是在这样的一个前提下诞生的。
纳米科技的诞生
随着人类对物质微观世界认识的不断进步,在20世纪进入尾声的时候,一门新兴的学科诞生了。1990年,第一次纳米科技大会在美国举行,《纳米技术杂志》正式创刊,纳米科学技术由此正式宣告“开宗立派”。
所谓纳米科学,是人们研究纳米尺度,即100纳米至0.1纳米这个微观范围内的物质所具有的特异现象和功能的科学;而纳米技术则是指在纳米科学的基础上制造新材料、研究新工艺的方法和手段。虽然纳米科技问世的时间不长,但是它带来的冲击却是明显的。越来越多的科学家相信,这项新兴科学技术将带来新一轮的技术革命,人们将凭借它进入一个奇妙的崭新世界。
其实,从比较准确的意义上来讲,纳米科技诞生的时期应该还要早一些。
1984年,德国著名学者格莱特利用现代技术把一块6纳米的铁晶体压制成纳米块,并详细研究了它的内部结构,结果发现它比普通钢铁的强度要高12倍,硬度要高2~3个数量级。而且这种纳米金属在低温下甚至会失去传导能力,并且随着尺寸的缩小,纳米材料的熔点也会随之降低。
格莱特的研究实际上只是开了一个头,从而导致了科学家们对物质在纳米量级内物理性能变化和应用的广泛研究。一般来讲,纳米颗粒的尺寸通常不超过10个纳米。在这个量级内,物质颗粒的大小意味着它已经很接近一个原子的大小了。在这种状态下,物质的性能和结构的变化已经是非连续性的了。就是说,量子效应开始发生作用。因此,用纳米颗粒最后制成的材料与普通材料相比,在机械强度、磁、光、声、热等方面都有很大不同,由此会产生许多完全不同的功用。
很显然,纳米科学技术是一门以物理、化学两门基础学科的微观研究理论为基础,以先进的解析技术和工艺手段为前提的内容广泛的多学科综合体。它既不是某一学科的延伸和发展,也不能说是某一工艺技术革新的产物或转化。它是基础理论学科和当代高新技术紧密结合的产物。
纳米科技的诞生还表明了这样一种发展态势,即在当今的科学技术领域里,基础科学研究与应用技术发展的结合,已经呈现出一种越来越密不可分的趋势,以至于在相当多的情况下,人们已经很难完全区分出研究和应用之间的差别。按目前的研究状况,纳米科技一般分为纳米材料学、纳米电子学、纳米生物学和纳米制造学、纳米光学等,这其中的每一门学科又都具有跨学科性质,是集研究与应用于一体的边缘学科与综合体系。
在上述这些学科中,纳米材料是纳米科技领域比较成熟的组成部分,也是纳米科技的发展基础。在这方面,科学家们已经取得了一些重要进展。以陶瓷材料为例,普通陶瓷材料具有强度高而韧性差、熔点高而难以加工成形的特点;但利用纳米技术加工成的纳米陶瓷不仅保持了原有特性,还具有超塑性质,并可在较低温度下加工成耐高温的器件,从而大大拓宽了陶瓷材料在工业制造领域的应用范围。
另一方面,纳米电子学也被认为是微电子技术向纵深发展的必然结果。科学家们指出,开发具有纳米量级分辨率的工艺是取代现有集成电路生产工艺向微电子技术发展的方向;而纳米电子器件的研究与开发,也为新一代电子计算机的发展奠定了基础。
基于这一点,西方国家对这一领域投入了大量资金,许多大企业也纷纷跻身这一领域的研究开发。据了解,日本东芝公司已经率先取得了量子器件集成化的成果,并且大规模纳米级的集成器件也正在研制之中。用纳米器件制作机器人和纳米信息处理系统,在分子生物研究及医学研究领域,更是具有诱人的前景。将这些具有特殊功能的纳米机器人注入人体血管内,可以有效地进行全身健康检查和治疗,使脑血栓、心肌梗塞等疾病将不再成为威胁人类生命的“杀手”。
不过,尽管目前科学界在纳米科学技术领域已经取得了一系列重要的进展,并开发出了不少纳米材料和器件,但从严格的意义上讲,纳米科学技术在20世纪,仅是刚刚露出尖尖角的小荷,它的灿烂和美丽将是属于21世纪的。因而,这门学科的诞生可以说是20世纪的科学家们献给21世纪的一份珍贵的礼物。
不知道,不知道,不知道,不知道,不知道,不知道,不知道,不要问我,不要问我,不要问我,不要问我