如图,在△ABC中,AB=AC,AD是△ABC中边BC的中线,E是AD延长线上一点,连结BE、CE。试说明BE=CE。

2024-12-31 11:15:28
推荐回答(3个)
回答1:

在△ABC中∵AB=AC BD=CD ∴AD⊥BC 即AD垂直平分BC
∵E是直线AD上的点 ∴BE=CE (线段垂直平分线上的点到线段两端的距离相等。)

回答2:

证明:
∵ AB=AC AD 是△ABC中边BC的中线
∴BD=CD AD⊥BC
所以在△BDE与△CDE中
BD=CD
∠EDB=∠EDC=90°
DE=DE
∴△BDE≌△CDE
∴ BE=CE

回答3:

∵ AB=AC AD 是△ABC中边BC的中线
∴BD=CD AD⊥BC
所以在△BDE与△CDE中
BD=CD
∠EDB=∠EDC=90°
DE=DE
∴△BDE≌△CDE
∴ BE=CE 或 ∵AB=AC BD=CD ∴AD⊥BC 即AD垂直平分BC
∵E是直线AD上的点 ∴BE=CE