解:原式变形为x+y=-x²-2x+3=-(x²+2x+1)+4=-(x+1)²+4
只有当x+1=0时即当x=-1时-(x+1)²有最小值,所以x+y的最大值是4
f(x,y)=x+y+a(x^2+3x+y-3)
令df/dx = 1 + a(2x+3) =0,
令df/dy = 1 + a = 0, a = -1,
0= 1 + a(2x+3)=1-(2x+3), x=-1
d^2f/dx^2 = 2a = -2,
d^2f/dy^2 = 0,
d^2f/(dxdy) = 0
H = -2 < 0
f(-1,y)取得极大值.
f(-1,y)=-1+y - (1-3+y-3) = 4
答案是4
要详细过程吗
就是用画图和求导做的
你好,答案4。思路是化两个未知量为一个,然后用配方法。
x*2+3x+y-3=0可得y=-x*2-3x+3,再带入x+y中得:-x*2-2x+3然后用配方法得-(x+1)*2+4
显然(x+y)max为4,当且仅当x=-1时取得
rthr
4