随着数据科学家的崛起, (C)的地位将发生动摇。 A、国家领导人 B、大型企业 C、行业专家和技术专家 D、职业经理人 “数据科学家”在2009年由Natahn Yau首次提出,其概念是采用科学方法、运用数据挖掘工具寻找新的数据洞察的工程师。数据科学家集技术专家与数量分析师的角色于一身,与传统数量分析师相比:后者通常利用企业的内部数据进行分析,以支持领导层的决策;而前者更多的是通过关注面向用户的数据来创造不同特性的产品和流程,为客户提供有意义的增值服务。[1] 面向客户的性质决定了大部分数据科学家担任公司产品开发或营销部门的职位,或是效力于首席技术官。那么数据科学家需要具备哪些核心能力呢?科技记者Derrick Harris在其文章中介绍了数据科学家应具备的一些技能。 他表示,在你询问别人什么是数据科学家,或者数据科学家是做什么的时候,很容易发现:“数据科学家”其实是从“大数据”引发的术语混乱中形成的。数据科学的核心能力被定义为:SQL、统计、预测建模和编程、Python等,这些听起来很合理。但是很快就有更多名词添加到其中:Hadoop/MapReduce、机器学习、可视化,甚至还有传统的数学、物理、计算机科学等类似能力。 许多人呼吁专业领域、商业智慧、创造力及表达能力也是同样重要的。一个数据科学家不能只擅长数字(这种人被称为统计学家或分析师),也要能够理解业务:什么样的数据或结果才是有参考性的;能够找到新的数据集并为其创造新产品;然后能够让CEO们理解这一切。这是一个艰巨的任务,这个世界上这类人是很少的。作为顶尖的数据科学家,不要求他们对环境做出什么积极的改变,但是需要他们尝试做一些真正先进的东西,帮助大家更好的解决业务上的问题。