证明:令 x =(cos α)^2,
则 (sin α)^2 =1-x,
(tan α)^2 =(1-x) /x.
所以 左边=[ 3 -(1-x)^2 -x^2 ] /(2x)
=(2 +2x -2x^2) /(2x)
=(1 +x -x^2) /x,
右边=1 +(1-x) /x +(1-x)
=(1 +x -x^2) /x.
所以 左边=右边,
原等式成立.
= = = = = = = = =
换元法。
注意次数。
(sin α)^4 =(1-x)^2, 而不是 (1-x)^4.
同角三角函数问题,实际上是代数问题。
3=2+1=2+(sin^2α+cos^2α)^2=2+2sin^2αcos^2α+sin^4α+cos^4α
因此,3-sin^4α-cos^4α=2+2sin^2αcos^2α
于是:左边=(2+2sin^2αcos^2α)/(2cos^2α)=1/cos^2α+sin^2α=(sin^2α+cos^2α)/cos^2α+sin^2α
=1+tan^2α+sin^2α
得证。
化解还是求证?求证你也没有等式啊
可怕的东西。。