在编程中怎样确定一个数是不是素数

2024-12-19 01:51:14
推荐回答(4个)
回答1:

素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。
有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的。有些数则可以马上说出它不是素数。一个数,不管它有多大,只要它的个位数是2、4、5、6、8或0,就不可能是素数。此外,一个数的各位数字之和要是可以被3整除的话,它也不可能是素数。但如果它的个位数是1、3、7或9,而且它的各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数)。没有任何现成的公式可以告诉你一个数到底是不是素数。你只能试试看能不能将这
个数表示为两个比它小的数的乘积。
找素数的一种方法是从2开始用“是则留下,不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止,比方说,一直列到10,000)。第一个数是2,它是一个素数,所以应当把它留下来,然后继续往下数,每隔一个数删去一个数,这样就能把所有能被2整除、因而不是素数的数都去掉。在留下的最小的数当中,排在2后面的是3,这是第二个素数,因此应该把它留下,然后从它开始往后数,每隔两个数删去一个,这样就能把所有能被3整除的数全都去掉。下一个未去掉的数是5,然后往后每隔4个数删去一个,以除去所有能被5整除的数。再下一个数是7,往后每隔6个数删去一个;再下一个数是11,往后每隔10个数删一个;再下一个是13,往后每隔12个数删一个。……就这样依法做下去。
你也许会认为,照这样删下去,随着删去的数越来越多,最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面,再也不会有素数了。但是实际上,这样的情况是不会出现的。不管你取的数是多大,百万也好,万万也好,总还会有没有被删去的、比它大的素数。
事实上,早在公元前300年,希腊数学家欧几里得就已证明过,不论你取的数是多大,肯定还会有比它大的素数,假设你取出前6个素数,并把它们乘在一起:2*3*5*7*11*13=30030,然后再加上1,得30031。这个数不能被2、3、5、7、11、13整除,因为除的结果,每次都会余1。如果30031除了自己以外不能被任何数整除,它就是素数。如果能被其它数整除,那么30031所分解成的几个数,一定都大于13。事实上,30031=59*509。
对于前一百个、前一亿个或前任意多个素数,都可以这样做。如果算出了它们的乘积后再加上1,那么,所得的数或者是一个素数,或者是比所列出的素数还要大的几个素数的乘积。不论所取的数有多大,总有比它大的素数,因此,素
数的数目是无限的。
随着数的增大,我们会一次又一次地遇到两个都是素数的相邻奇数对,如5,7;11,13;17,19;29,31;41,43;等等。就数学家所能及的数来说,它们总是能找到这样的素数对。这样的素数对到底是不是有无限个呢?谁也不知道。数学家认为是无限的,但他们从来没能证明它。这就是数学家为什么对素数感兴趣的原因。素数为数学家提供了一些看起来很容易、但事实却非常难以解决的问题,他们目前还没能对付这个挑战哩。

迄今为止,人类发现的最大的素数是 224036583-1,这是第 41 个 梅森(Mersenne)素数。

素数也叫质数,是只能被自己和 1 整除的数,例如2、3、5、7、11等。2500 年前,希腊数学家欧几里德证明了素数是无限的,并提出少量素数可写成“2 的n次方减 1”的形式,这里 n 也是一个素数。此后许多数学家曾对这种素数进行研究,17 世纪的法国教士马丁·梅森(Martin Mersenne)是其中成果较为卓著的一位,因此后人将“2的n次方减1”形式的素数称为梅森素数。

第19~41个梅森素数
序号 素数 位数 发现人 时间
41 224036583-1 7235733 John Findley 2004
40 220996011-1 6320430 Michael Shafer 2003
39 213466917-1 4053946 Michael Cameron 2001
38 26972593-1 2098960 Nayan, Woltman, Kurowski 1999
37 23021377-1 909526 Clarkson, Woltman, Kurowski 1998
36 22976221-1 895932 Spence, Woltman 1997
35 21398269-1 420921 Armengaud, Woltman 1996
34 21257787-1 378632 Slowinski & Gage 1996
33 2859433-1 258716 Slowinski & Gage 1994
32 2756839-1 227832 Slowinski & Gage 1992
31 2216091-1 65050 David Slowinski 1985
30 2132049-1 39751 David Slowinski 1983
29 2110503-1 33265 Welsh & Colquitt 1988
28 286243-1 25962 David Slowinski 1982
27 244497-1 13395 Slowinski & Nelson 1979
26 223209-1 6987 L. Curt Noll 1979
25 221701-1 6533 Nickel & Noll 1978
24 219937-1 6002 Bryant Tuckerman 1971
23 211213-1 3376 Donald B. Gillies 1963
22 29941-1 2993 Donald B. Gillies 1963
21 29689-1 2917 Donald B. Gillies 1963
20 24423-1 1332 Alexander Hurwitz 1961
19 24253-1 1281 Alexander Hurwitz 1961

1995 年,美国程序设计师乔治·沃特曼整理有关梅森素数的资料,编制了一个梅森素数计算程序,并将其放置在因特网上供数学爱好者使用,这就是“因特 网梅森素数大搜索”计划。目前有6万多名志愿者、超过20万台计算机参与这项计划。该计划采取分布式计算方式,利用大量普通计算机的闲置时间,获得相当于 超级计算机的运算能力,第 37、38 和 39 个梅森素数都是用这种方法找到的。美国一家基金会还专门设立了 10 万美元的奖金,鼓励第一个找到超过千万位素数的人。

回答2:

素数只能被1和它本身整除,判断一个数i是否为素数,可以用一个数j对它进行测试,如果 i%j == 0 ,而 j 又不是 1 或 它本身, 那么这个数就不是素数;如果 i%j != 0 ,那么 j 一直增加下去,看 j 能不能有一个值可以整除 i , 如果 j是一个素数,那么j可以一直增加到 i 为止,这样就可以看出它是不是素数了。

回答3:

for(j=2;j<=i;j++)
{
if(j==i) printf("%d\n",i);
if(!(i%j))break;
}

回答4:

http://chen-zhijun.blog.163.com/blog/static/111432042006102810525653/