设F(X)=sin(πx⼀4-π⼀6)-2cos(πx⼀8)2+1求最小正周期

2024-12-13 18:00:15
推荐回答(2个)
回答1:

解:f(x)=sin(πx/4-π/6)-[2cos²(πx/8)-1]
=sin(πx/4-π/6)-cos(πx/4)
=sin(πx/4)cos(π/6)-cos(πx/4)sin(π/6)-cos(πx/4)
=根号3/2sin(πx/4)-(1/2)cos(πx/4)-cos(πx/4)
=根号3/2sin(πx/4)-(3/2)cos(πx/4)
=根号3[1/2sin(πx/4)-(根号3/2)cos(πx/4]
=根号3sin(πx/4-π/3)
=根号3sin(π/4(x-4/3))
T=2π/(π/4)=8,

回答2:

是F(X)=sin(πx/4-π/6)-2cos(πx/8)^2+1还是F(X)=sin(πx/4-π/6)-2cos^2(πx/8)+1?