1. 设Sn=n2^n-n 由错位相减法得
Sn=1*2^1+2*2^2+3*2^3+...+n*2^n-(1+2+....+n)①
2Sn= 1*2^2+2*2^3+...+(n-1)*2^n+n*2^(n+1)-2(1+2+...+n)②
②-① Sn=n*2^(n+1)-(1+2+...+n)-(2^2+2^3+...+2^n)-2
=(n+1)2^(n+1)-n(n+1)/2+2
2.是(2n-3)/(2^(n-3))么
Sn=1*2^1-1+2*2^2-2+3*2^3-3+.....+n*2^n-n
Sn=1*2^1+2*2^2+3*2^3+.....+n*2^n-(1+2+3+...+n)
Sn=1*2^1+2*2^2+3*2^3+.....+n*2^n-n(n+1)/2
2Sn=1*2^2+2*2^3+3*2^4+.....+n*2^(n+1)-n(n+1)
Sn-2Sn=2^1+2^2+2^3+....+2^n-n*2^(n+1)+n(n+1)
-Sn=2*(1-2^n)/(1-2)-n*2^(n+1)+n(n+1)
-Sn=2^(n+1)-2-n*2^(n+1)+n(n+1)
Sn=n*2^(n+1)-n(n+1)-2^(n+1)+2
Sn=n*2^(n+1)-2^(n+1)-n(n+1)+2
Sn=2^(n+1)*(n-1)-n(n+1)+2
解:1。Sn=(1*2-1)+(2*2^2-2)+.....+(n*2^n-n)
=(1*2+2*2^2+3*2^3+.....+n*2^n)-(1+2+3+...+n)
设Tn=1*2+2*2^2+3*2^3+.....+n*2^n, (1)
则2Tn= 1*2^2+2*2^3+.....+(n-1)*2^n+n*2^(n+1) (2)
(2)-(1):Tn=-2-2^2-2^3-.............-2^n+n*2^(n+1)
=-2(1-2^n)/(1-2)+n*2^(n+1)
=(n-1)*2^(n+1)+2
因此Sn=(n-1)*2^(n+1)+2-n(n+1)/2
2.Sn=∑2n-∑3/2^(n-3)
=n(n+1)-12[1-(1/2)^n]/(1-1/2)
=n(n+1)-24[1-(1/2)^n]
=n(n+1)+3*(1/2)^(n-3)-24
请参阅图片。
1.n*2^n用错位相减法 n用n(n+1)/2
2.还是用错位相减法
数列{An*Bn}其中An为等差 Bn为等比就用错位相减法哦
l令n*2^n-n=a
a=1*2^1+2*2^2+3*2^3+......+n*2^n-(1+2+3+......+n)
2a= 1*2^2+2*2^3+......+(n-1)*2^n+n*2^(n+1)-2*(1+2+3+......+n)
a=2a-a=-(1*2^1+1*2^2+1*2^3+......+1*2^n)+n*2^(n+1)-(1+2+3+......+n)
=-4(1-2^(n-1))/(1-2)+n*2^(n+1)-n(n+1)/2
=4+(n-2)^(n+1)-n(n+1)/2