人工智能,机器学习,统计学和数据挖掘有什么区别

2025-01-04 10:27:37
推荐回答(2个)
回答1:

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 统计模型(statistical model)有些过程无法用理论分析方法导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系,称为统计模型。常用的数理统计分析有有最大事后概率估算法,最大似然率辨识法最大事后概率估算法,最大似然率辨识法等。

回答2:

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
统计模型(statistical model)有些过程无法用理论分析方法导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系,称为统计模型。

更多人工智能、机器学习、统计学和数据挖掘的分析,推荐咨询CDA数据分析师的课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 点击预约免费试听课。