已知函数f(x)=(x3+3x2+ax+b)?e-x.(1)如果a=b=-3,求f(x)的单调区间和极值;(2)如果a=6+1n,b=

2025-01-05 22:48:38
推荐回答(1个)
回答1:

(1)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x
故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x-3-9x)=-x(x-3)(x+3)e-x
当x<-3或0<x<3时,f′(x)>0;
当-3<x<0或x>3时,f′(x)<0.
从而f(x)在(-∞,-3),(0,3)单调递增,在(-3,0),(3,+∞)单调递减;
极大值为f(-3)=6e3,f(3)=42e-3,极小值为f(0)=-3
(2)a=6+

1
n
,b=5+
1
n
,f(x)=[x3+3x2+(6+
1
n
)x+(5+
1
n
)]e-x
f′(x)=-[x3+3x2+(6+
1
n
)x+(5+
1
n
)]e-x+[3x2+6x+(6+
1
n
)]e-x=-e-x(x3+
1
n
x-1)
令f′(x)=-e-x(x3+
1
n
x-1)=0即x3+
1
n
x-1=0
因为g(x)=x3+
1
n
x-1在R上递增,f(0)=-1<0,f(1)=
1
n
>0
∴x3+
1
n
x-1=0有唯一解
(i)因为0<ai<1,则有ai3<ai
a
+
ai
i
=1
ai
i
=1?
a
>1?ai

所以ai >
i
1+i
所以
1
(1+i)2ai
1
i(i+1)

n
i=1
1
(1+i)2ai
n
i=1
1
i(i+1)
=1?
1
n+1
n
n+1

ai >
i
1+i
可得an
n
1+n
,所以
n
i=1
1
(1+i)2ai
an

(ii)证明:
a
+
an
n
=1
显然0<an<1
a
+
an+1
n+1
=1
,两式相减得(an+1?an)  (
a
+an+1an+
a
+
1
n
)
>0
所以an+1>an,故1>an+1>an>0
f(an)=(3
a
+6an+6+
1
n
e?an,又
a
+
an
n
=1
,所以
1
n
1?
a
an

所以f(an)=(
2a
+6an+6+
1
an
) e?an,an∈(0,1)
构造函数g(x)=
(2x
+6x +6+
1
x
)e?x
,x∈(0,1)
g′(x)<0所以g(x)在(0,1)上是减函数,
又1>an+1>an>0
所以g(an)>g(an+1)>g(1)=
15
e

即f(an)>f(an+1
15
e