(1)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x,
故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x-3-9x)=-x(x-3)(x+3)e-x
当x<-3或0<x<3时,f′(x)>0;
当-3<x<0或x>3时,f′(x)<0.
从而f(x)在(-∞,-3),(0,3)单调递增,在(-3,0),(3,+∞)单调递减;
极大值为f(-3)=6e3,f(3)=42e-3,极小值为f(0)=-3
(2)a=6+
,b=5+1 n
,f(x)=[x3+3x2+(6+1 n
)x+(5+1 n
)]e-x,1 n
f′(x)=-[x3+3x2+(6+
)x+(5+1 n
)]e-x+[3x2+6x+(6+1 n
)]e-x=-e-x(x3+1 n
x-1)1 n
令f′(x)=-e-x(x3+
x-1)=0即x3+1 n
x-1=01 n
因为g(x)=x3+
x-1在R上递增,f(0)=-1<0,f(1)=1 n
>01 n
∴x3+
x-1=0有唯一解1 n
(i)因为0<ai<1,则有ai3<ai,
+
a
=1,ai i
=1?ai i
>1?ai
a
所以ai >
所以i 1+i
<1
(1+i)2ai
1 i(i+1)
n i=1
<1
(1+i)2ai
n i=1
=1?1 i(i+1)
=1 n+1
n n+1
由ai >
可得an>i 1+i
,所以n 1+n
n i=1
<an1
(1+i)2ai
(ii)证明:
+
a
=1显然0<an<1an n
又
+
a
=1,两式相减得(an+1?an) (an+1 n+1
+an+1an+
a
+
a
)>01 n
所以an+1>an,故1>an+1>an>0
f(an)=(3
+6an+6+
a
)e?an,又1 n
+
a
=1,所以an n
=1 n
1?
a
an
所以f(an)=(
+6an+6+
2a
) e?an,an∈(0,1)1 an
构造函数g(x)=
+6x +6+
(2x
)e?x,x∈(0,1)1 x
g′(x)<0所以g(x)在(0,1)上是减函数,
又1>an+1>an>0
所以g(an)>g(an+1)>g(1)=
15 e
即f(an)>f(an+1)>
.15 e