在△ABC中,∠ACB=90°,AC=4,BC=3,∴AB= (AC)2+(BC)2 =5.∵O是AB的中点,∴OC=OB,∴∠OCB=∠B,则sin∠OCB=sin∠B.∵sin∠B= AC AB = 4 5 ,∴sin∠OCB= 4 5 .