观察下列各式:1⼀1*2=1⼀1-1⼀2,,1⼀2*3=1⼀2-1⼀3,1⼀3*4=1⼀3-1⼀4......

2025-01-02 12:41:30
推荐回答(3个)
回答1:

2/1*2+2/2*3+2/3*4+.......+2/n(n+1)
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2*(n+1-1)/(n+1)
=2n/(n+1)

回答2:

2/1*2+2/2*3+2/3*4+.......+2/n(n+1)
=2*(1/1*2+1/2*3+1/3*4+....+1/n(n+1))
=2*(1-1/2+1/2-1/3+1/3-1/4+......+1/n-1/(n-1))
=2*(1-1/(n-1))
=2*(n-1-1)/(n-1)
=2(n-2)/(n-1)

回答3:

2n/(n+1)