求(1-1⼀2^2)*(1-1⼀3^)*(1-1⼀4^)*……*(1-1⼀99^2)*(1-1⼀100^2)的值

2024-12-15 01:20:07
推荐回答(2个)
回答1:

(1-1/2^2)*(1-1/3^)*(1-1/4^)*……*(1-1/99^2)*(1-1/100^2)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)*.....(1-1/99)(1+1/99)(1-1/100)(1+1/100)
=(1/2)*(3/2)(2/3)*(4/3)*.....(98/99)*(100/99)(99/100)(101/100)
=(1/2)*(101/100)
=101/200
提示:运用平方差公式

回答2:

(1-1/2^2)*(1-1/3^)*(1-1/4^)*……*(1-1/99^2)*(1-1/100^2)=1/2*3/2*2/3.......99/100*101/100=101/200