(1)解:原方程可变形为:
(2x-3+x-2)(2x-3-x+2)=0,
(3x-5)(x-1)=0,
3x-5=0或x-1=0,
∴x1=53,x2=1.
(2)解:原方程可化为:
x2+2x-3=0,
这里a=1,b=2,c=-3,
∵b2-4ac=22-4×1×(-3)=4+12=16>0,
∴x=-2±162×1=-2±42=-1±2,
∴x1=1,x2=-3.
(2x-1)(x+2)-(x-1)(x+1)=(3+x)(-3+x)
解: 2x^2-x+4x-2-x^2+1=x^2-9
2x^2-x^2-x^2+3x=-9+1
3x=-8
x=-8/3
(2x-1)(x+2)-(x-1)(x+1)=(3+x)(-3+x)
2x^2-x+4x-2-x^2+1=x^2-9
2x^2-x^2-x^2+3x=-9+1
3x=-8
x=-8/3