在等比数列{an}中,(1)a4=2,a7=8,求an; (2)a2+a5=18,a3+a6=9,an=1,求n.

2024-12-25 15:32:13
推荐回答(3个)
回答1:

(1)q^3=a7/a4=8/2=4
q=4^(1/3)=2^(2/3)
a1=a4/q^3=2/4=1/2
an=a1*q^(n-1)=1/2*(2^(2/3))^(n-1)=2^(-1+2n/3-2/3)=2^(2n/3-5/3)

(2)
a2+a5=a2(1+q^3)=18
a3+a6=a3(1+q^3)=9
下式/上式得:q=a3/a2=1/2
a2+a5=a1*1/2+a1*(1/2)^4=18
a1=32
an=a1*q^(n-1)=32*(1/2)^(n-1)=1
(1/2)^(n-1)=1/32=(1/2)^5
n-1=5
n=6

回答2:

(1)an=0.125*2^n
(2)

回答3:

解:
设数列公比为q
a4=a1q^3=2
a7=a1q^6=8
a7/a4=q^3=4
q=4^(1/3)
a1=2/q^3=2/4=1/2
an=(1/2)4^[(n-1)/3]=2^[2(n-1)/3-1]=2^[(2n-5)/3]

a2+a5=a1q+a1q^4=a1q(1+q^3)=18
a3+a6=a1q^2+a1q^5=a1q^2(1+q^3)=9
(a3+a6)/(a2+a5)=q=9/18=1/2
a1=18/[q(1+q^3)]=32
an=a1q^(n-1)=32(1/2)^(n-1)=2^(5-n+1)=2^(6-n)
an=2^(6-n)